axiom of nested intervals - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

axiom of nested intervals - перевод на русский

Nested intervals theorem; Nested interval property; Nested sequence of closed intervals; Nested sequences of intervals; Nested sequence of intervals; Nested Intervals Theorem
  • {{pi}} can be estimated by computing the perimeters of circumscribed and inscribed polygons.
  • 4 members of a sequence of nested intervals

axiom of nested intervals      
аксиома о вложенных промежутках
comprehension axiom         
AXIOM SCHEMA
Axiom of specification; Axiom of separation; Axiom schema of separation; Axiom schema of comprehension; Axiom of comprehension; Unrestricted comprehension; Axiom of abstraction; Axiom of subsets; Axioms of subsets; Subset axiom; Axiom schema of restricted comprehension; Comprehension axiom; Aussonderungsaxiom; Axiom schema of unrestricted comprehension; Unrestricted comprehension principle

математика

аксиома выделения

axiom of foundation         
AXIOM STATING THAT ALL SETS ARE WELL-FOUNDED
Axiom of foundation; Axiom of Fundierung; Foundation axiom; Regularity axiom; Axiom of Foundation; Axiom of well foundation; Axiom of Regularity; Well founded set; Axiom of fundierung

математика

аксиома фундирования

Определение

грип
ГРИП, ГРИПП, гриппа, ·муж. (·франц. grippe) (мед.). Инфекционная болезнь - катарральное воспаление дыхательных путей, сопровождаемое лихорадочным состоянием; то же, что инфлуэнца
.

Википедия

Nested intervals

In mathematics, a sequence of nested intervals can be intuitively understood as an ordered collection of intervals I n {\displaystyle I_{n}} on the real number line with natural numbers n = 1 , 2 , 3 , {\displaystyle n=1,2,3,\dots } as an index. In order for a sequence of intervals to be considered nested intervals, two conditions have to be met:

  1. Every interval in the sequence is contained in the previous one ( I n + 1 {\displaystyle I_{n+1}} is always a subset of I n {\displaystyle I_{n}} ).
  2. The length of the intervals get arbitrarily small (meaning the length falls below every possible threshold ε {\displaystyle \varepsilon } after a certain index N {\displaystyle N} ).

In other words, the left bound of the interval I n {\displaystyle I_{n}} can only increase ( a n + 1 a n {\displaystyle a_{n+1}\geq a_{n}} ), and the right bound can only decrease ( b n + 1 b n {\displaystyle b_{n+1}\leq b_{n}} ).

Historically - long before anyone defined nested intervals in a textbook - people implicitly constructed such nestings for concrete calculation purposes. For example, the ancient Babylonians discovered a method for computing square roots of numbers. In contrast, the famed Archimedes constructed sequences of polygons, that inscribed and surcumscribed a unit circle, in order to get a lower and upper bound for the circles circumference - which is the circle number Pi ( π {\displaystyle \pi } ).

The central question to be posed is the nature of the intersection over all the natural numbers, or, put differently, the set of numbers, that are found in every Interval I n {\displaystyle I_{n}} (thus, for all n N {\displaystyle n\in \mathbb {N} } ). In modern mathematics, nested intervals are used as a construction method for the real numbers (in order to complete the field of rational numbers).

Как переводится axiom of nested intervals на Русский язык